Patient-Specific Method of Generating Parametric Maps of Patlak Ki without Blood Sampling or Metabolite Correction: A Feasibility Study
نویسندگان
چکیده
Currently, kinetic analyses using dynamic positron emission tomography (PET) experience very limited use despite their potential for improving quantitative accuracy in several clinical and research applications. For targeted volume applications, such as radiation treatment planning, treatment monitoring, and cerebral metabolic studies, the key to implementation of these methods is the determination of an arterial input function, which can include time-consuming analysis of blood samples for metabolite correction. Targeted kinetic applications would become practical for the clinic if blood sampling and metabolite correction could be avoided. To this end, we developed a novel method (Patlak-P) of generating parametric maps that is identical to Patlak K(i) (within a global scalar multiple) but does not require the determination of the arterial input function or metabolite correction. In this initial study, we show that Patlak-P (a) mimics Patlak K(i) images in terms of visual assessment and target-to-background (TB) ratios of regions of elevated uptake, (b) has higher visual contrast and (generally) better image quality than SUV, and (c) may have an important role in improving radiotherapy planning, therapy monitoring, and neurometabolism studies.
منابع مشابه
Voxel level quantification of [11C]CURB, a radioligand for Fatty Acid Amide Hydrolase, using high resolution positron emission tomography
[11C]CURB is a novel irreversible radioligand for imaging fatty acid amide hydrolase in the human brain. In the present work, we validate an algorithm for generating parametric map images of [11C]CURB acquired with a high resolution research tomograph (HRRT) scanner. This algorithm applies the basis function method on an irreversible two-tissue compartment model (k4 = 0) with arterial input fun...
متن کاملDifferential diagnosis of pulmonary lesions by parametric imaging in (18)F-FDG PET/CT dynamic multi-bed scanning.
PURPOSE Benign and malignant pulmonary lesions are not easy to distinguish in a clinical setting. We investigated the feasibility of using parametric imaging of the rate constant Ki to diagnose the nature of pulmonary lesions. METHODS Dynamic multi-bed scanning followed by a routine examination was performed on 21 patients with pulmonary lesions who were divided into two groups with malignant...
متن کاملGeneralized whole-body Patlak parametric imaging for enhanced quantification in clinical PET.
We recently developed a dynamic multi-bed PET data acquisition framework to translate the quantitative benefits of Patlak voxel-wise analysis to the domain of routine clinical whole-body (WB) imaging. The standard Patlak (sPatlak) linear graphical analysis assumes irreversible PET tracer uptake, ignoring the effect of FDG dephosphorylation, which has been suggested by a number of PET studies. I...
متن کاملDynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.
In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15-20 cm) of...
متن کاملEvaluation of limited blood sampling population input approaches for kinetic quantification of [18F]fluorothymidine PET data
BACKGROUND Quantification of kinetic parameters of positron emission tomography (PET) imaging agents normally requires collecting arterial blood samples which is inconvenient for patients and difficult to implement in routine clinical practice. The aim of this study was to investigate whether a population-based input function (POP-IF) reliant on only a few individual discrete samples allows acc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011